2016-03-04 07:09:26 -08:00

2112 lines
62 KiB
C

/*
* Copyright 2011 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Alex Deucher
*/
#include "drmP.h"
#include "radeon.h"
#include "rv6xxd.h"
#include "r600_dpm.h"
#include "rv6xx_dpm.h"
#include "atom.h"
#include <linux/seq_file.h>
static u32 rv6xx_scale_count_given_unit(struct radeon_device *rdev,
u32 unscaled_count, u32 unit);
static struct rv6xx_ps *rv6xx_get_ps(struct radeon_ps *rps)
{
struct rv6xx_ps *ps = rps->ps_priv;
return ps;
}
static struct rv6xx_power_info *rv6xx_get_pi(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rdev->pm.dpm.priv;
return pi;
}
static void rv6xx_force_pcie_gen1(struct radeon_device *rdev)
{
u32 tmp;
int i;
tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
tmp &= LC_GEN2_EN;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp);
tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
tmp |= LC_INITIATE_LINK_SPEED_CHANGE;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp);
for (i = 0; i < rdev->usec_timeout; i++) {
if (!(RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL) & LC_CURRENT_DATA_RATE))
break;
udelay(1);
}
tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
tmp &= ~LC_INITIATE_LINK_SPEED_CHANGE;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp);
}
static void rv6xx_enable_pcie_gen2_support(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
if ((tmp & LC_OTHER_SIDE_EVER_SENT_GEN2) &&
(tmp & LC_OTHER_SIDE_SUPPORTS_GEN2)) {
tmp |= LC_GEN2_EN;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp);
}
}
static void rv6xx_enable_bif_dynamic_pcie_gen2(struct radeon_device *rdev,
bool enable)
{
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL) & ~LC_HW_VOLTAGE_IF_CONTROL_MASK;
if (enable)
tmp |= LC_HW_VOLTAGE_IF_CONTROL(1);
else
tmp |= LC_HW_VOLTAGE_IF_CONTROL(0);
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp);
}
static void rv6xx_enable_l0s(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL) & ~LC_L0S_INACTIVITY_MASK;
tmp |= LC_L0S_INACTIVITY(3);
WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp);
}
static void rv6xx_enable_l1(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL);
tmp &= ~LC_L1_INACTIVITY_MASK;
tmp |= LC_L1_INACTIVITY(4);
tmp &= ~LC_PMI_TO_L1_DIS;
tmp &= ~LC_ASPM_TO_L1_DIS;
WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp);
}
static void rv6xx_enable_pll_sleep_in_l1(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL) & ~LC_L1_INACTIVITY_MASK;
tmp |= LC_L1_INACTIVITY(8);
WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp);
/* NOTE, this is a PCIE indirect reg, not PCIE PORT */
tmp = RREG32_PCIE(PCIE_P_CNTL);
tmp |= P_PLL_PWRDN_IN_L1L23;
tmp &= ~P_PLL_BUF_PDNB;
tmp &= ~P_PLL_PDNB;
tmp |= P_ALLOW_PRX_FRONTEND_SHUTOFF;
WREG32_PCIE(PCIE_P_CNTL, tmp);
}
static int rv6xx_convert_clock_to_stepping(struct radeon_device *rdev,
u32 clock, struct rv6xx_sclk_stepping *step)
{
int ret;
struct atom_clock_dividers dividers;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
clock, false, &dividers);
if (ret)
return ret;
if (dividers.enable_post_div)
step->post_divider = 2 + (dividers.post_div & 0xF) + (dividers.post_div >> 4);
else
step->post_divider = 1;
step->vco_frequency = clock * step->post_divider;
return 0;
}
static void rv6xx_output_stepping(struct radeon_device *rdev,
u32 step_index, struct rv6xx_sclk_stepping *step)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
u32 ref_clk = rdev->clock.spll.reference_freq;
u32 fb_divider;
u32 spll_step_count = rv6xx_scale_count_given_unit(rdev,
R600_SPLLSTEPTIME_DFLT *
pi->spll_ref_div,
R600_SPLLSTEPUNIT_DFLT);
r600_engine_clock_entry_enable(rdev, step_index, true);
r600_engine_clock_entry_enable_pulse_skipping(rdev, step_index, false);
if (step->post_divider == 1)
r600_engine_clock_entry_enable_post_divider(rdev, step_index, false);
else {
u32 lo_len = (step->post_divider - 2) / 2;
u32 hi_len = step->post_divider - 2 - lo_len;
r600_engine_clock_entry_enable_post_divider(rdev, step_index, true);
r600_engine_clock_entry_set_post_divider(rdev, step_index, (hi_len << 4) | lo_len);
}
fb_divider = ((step->vco_frequency * pi->spll_ref_div) / ref_clk) >>
pi->fb_div_scale;
r600_engine_clock_entry_set_reference_divider(rdev, step_index,
pi->spll_ref_div - 1);
r600_engine_clock_entry_set_feedback_divider(rdev, step_index, fb_divider);
r600_engine_clock_entry_set_step_time(rdev, step_index, spll_step_count);
}
static struct rv6xx_sclk_stepping rv6xx_next_vco_step(struct radeon_device *rdev,
struct rv6xx_sclk_stepping *cur,
bool increasing_vco, u32 step_size)
{
struct rv6xx_sclk_stepping next;
next.post_divider = cur->post_divider;
if (increasing_vco)
next.vco_frequency = (cur->vco_frequency * (100 + step_size)) / 100;
else
next.vco_frequency = (cur->vco_frequency * 100 + 99 + step_size) / (100 + step_size);
return next;
}
static bool rv6xx_can_step_post_div(struct radeon_device *rdev,
struct rv6xx_sclk_stepping *cur,
struct rv6xx_sclk_stepping *target)
{
return (cur->post_divider > target->post_divider) &&
((cur->vco_frequency * target->post_divider) <=
(target->vco_frequency * (cur->post_divider - 1)));
}
static struct rv6xx_sclk_stepping rv6xx_next_post_div_step(struct radeon_device *rdev,
struct rv6xx_sclk_stepping *cur,
struct rv6xx_sclk_stepping *target)
{
struct rv6xx_sclk_stepping next = *cur;
while (rv6xx_can_step_post_div(rdev, &next, target))
next.post_divider--;
return next;
}
static bool rv6xx_reached_stepping_target(struct radeon_device *rdev,
struct rv6xx_sclk_stepping *cur,
struct rv6xx_sclk_stepping *target,
bool increasing_vco)
{
return (increasing_vco && (cur->vco_frequency >= target->vco_frequency)) ||
(!increasing_vco && (cur->vco_frequency <= target->vco_frequency));
}
static void rv6xx_generate_steps(struct radeon_device *rdev,
u32 low, u32 high,
u32 start_index, u8 *end_index)
{
struct rv6xx_sclk_stepping cur;
struct rv6xx_sclk_stepping target;
bool increasing_vco;
u32 step_index = start_index;
rv6xx_convert_clock_to_stepping(rdev, low, &cur);
rv6xx_convert_clock_to_stepping(rdev, high, &target);
rv6xx_output_stepping(rdev, step_index++, &cur);
increasing_vco = (target.vco_frequency >= cur.vco_frequency);
if (target.post_divider > cur.post_divider)
cur.post_divider = target.post_divider;
while (1) {
struct rv6xx_sclk_stepping next;
if (rv6xx_can_step_post_div(rdev, &cur, &target))
next = rv6xx_next_post_div_step(rdev, &cur, &target);
else
next = rv6xx_next_vco_step(rdev, &cur, increasing_vco, R600_VCOSTEPPCT_DFLT);
if (rv6xx_reached_stepping_target(rdev, &next, &target, increasing_vco)) {
struct rv6xx_sclk_stepping tiny =
rv6xx_next_vco_step(rdev, &target, !increasing_vco, R600_ENDINGVCOSTEPPCT_DFLT);
tiny.post_divider = next.post_divider;
if (!rv6xx_reached_stepping_target(rdev, &tiny, &cur, !increasing_vco))
rv6xx_output_stepping(rdev, step_index++, &tiny);
if ((next.post_divider != target.post_divider) &&
(next.vco_frequency != target.vco_frequency)) {
struct rv6xx_sclk_stepping final_vco;
final_vco.vco_frequency = target.vco_frequency;
final_vco.post_divider = next.post_divider;
rv6xx_output_stepping(rdev, step_index++, &final_vco);
}
rv6xx_output_stepping(rdev, step_index++, &target);
break;
} else
rv6xx_output_stepping(rdev, step_index++, &next);
cur = next;
}
*end_index = (u8)step_index - 1;
}
static void rv6xx_generate_single_step(struct radeon_device *rdev,
u32 clock, u32 index)
{
struct rv6xx_sclk_stepping step;
rv6xx_convert_clock_to_stepping(rdev, clock, &step);
rv6xx_output_stepping(rdev, index, &step);
}
static void rv6xx_invalidate_intermediate_steps_range(struct radeon_device *rdev,
u32 start_index, u32 end_index)
{
u32 step_index;
for (step_index = start_index + 1; step_index < end_index; step_index++)
r600_engine_clock_entry_enable(rdev, step_index, false);
}
static void rv6xx_set_engine_spread_spectrum_clk_s(struct radeon_device *rdev,
u32 index, u32 clk_s)
{
WREG32_P(CG_SPLL_SPREAD_SPECTRUM_LOW + (index * 4),
CLKS(clk_s), ~CLKS_MASK);
}
static void rv6xx_set_engine_spread_spectrum_clk_v(struct radeon_device *rdev,
u32 index, u32 clk_v)
{
WREG32_P(CG_SPLL_SPREAD_SPECTRUM_LOW + (index * 4),
CLKV(clk_v), ~CLKV_MASK);
}
static void rv6xx_enable_engine_spread_spectrum(struct radeon_device *rdev,
u32 index, bool enable)
{
if (enable)
WREG32_P(CG_SPLL_SPREAD_SPECTRUM_LOW + (index * 4),
SSEN, ~SSEN);
else
WREG32_P(CG_SPLL_SPREAD_SPECTRUM_LOW + (index * 4),
0, ~SSEN);
}
static void rv6xx_set_memory_spread_spectrum_clk_s(struct radeon_device *rdev,
u32 clk_s)
{
WREG32_P(CG_MPLL_SPREAD_SPECTRUM, CLKS(clk_s), ~CLKS_MASK);
}
static void rv6xx_set_memory_spread_spectrum_clk_v(struct radeon_device *rdev,
u32 clk_v)
{
WREG32_P(CG_MPLL_SPREAD_SPECTRUM, CLKV(clk_v), ~CLKV_MASK);
}
static void rv6xx_enable_memory_spread_spectrum(struct radeon_device *rdev,
bool enable)
{
if (enable)
WREG32_P(CG_MPLL_SPREAD_SPECTRUM, SSEN, ~SSEN);
else
WREG32_P(CG_MPLL_SPREAD_SPECTRUM, 0, ~SSEN);
}
static void rv6xx_enable_dynamic_spread_spectrum(struct radeon_device *rdev,
bool enable)
{
if (enable)
WREG32_P(GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, ~DYN_SPREAD_SPECTRUM_EN);
else
WREG32_P(GENERAL_PWRMGT, 0, ~DYN_SPREAD_SPECTRUM_EN);
}
static void rv6xx_memory_clock_entry_enable_post_divider(struct radeon_device *rdev,
u32 index, bool enable)
{
if (enable)
WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4),
LEVEL0_MPLL_DIV_EN, ~LEVEL0_MPLL_DIV_EN);
else
WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4), 0, ~LEVEL0_MPLL_DIV_EN);
}
static void rv6xx_memory_clock_entry_set_post_divider(struct radeon_device *rdev,
u32 index, u32 divider)
{
WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4),
LEVEL0_MPLL_POST_DIV(divider), ~LEVEL0_MPLL_POST_DIV_MASK);
}
static void rv6xx_memory_clock_entry_set_feedback_divider(struct radeon_device *rdev,
u32 index, u32 divider)
{
WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4), LEVEL0_MPLL_FB_DIV(divider),
~LEVEL0_MPLL_FB_DIV_MASK);
}
static void rv6xx_memory_clock_entry_set_reference_divider(struct radeon_device *rdev,
u32 index, u32 divider)
{
WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4),
LEVEL0_MPLL_REF_DIV(divider), ~LEVEL0_MPLL_REF_DIV_MASK);
}
static void rv6xx_vid_response_set_brt(struct radeon_device *rdev, u32 rt)
{
WREG32_P(VID_RT, BRT(rt), ~BRT_MASK);
}
static void rv6xx_enable_engine_feedback_and_reference_sync(struct radeon_device *rdev)
{
WREG32_P(SPLL_CNTL_MODE, SPLL_DIV_SYNC, ~SPLL_DIV_SYNC);
}
static u32 rv6xx_clocks_per_unit(u32 unit)
{
u32 tmp = 1 << (2 * unit);
return tmp;
}
static u32 rv6xx_scale_count_given_unit(struct radeon_device *rdev,
u32 unscaled_count, u32 unit)
{
u32 count_per_unit = rv6xx_clocks_per_unit(unit);
return (unscaled_count + count_per_unit - 1) / count_per_unit;
}
static u32 rv6xx_compute_count_for_delay(struct radeon_device *rdev,
u32 delay_us, u32 unit)
{
u32 ref_clk = rdev->clock.spll.reference_freq;
return rv6xx_scale_count_given_unit(rdev, delay_us * (ref_clk / 100), unit);
}
static void rv6xx_calculate_engine_speed_stepping_parameters(struct radeon_device *rdev,
struct rv6xx_ps *state)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
pi->hw.sclks[R600_POWER_LEVEL_LOW] =
state->low.sclk;
pi->hw.sclks[R600_POWER_LEVEL_MEDIUM] =
state->medium.sclk;
pi->hw.sclks[R600_POWER_LEVEL_HIGH] =
state->high.sclk;
pi->hw.low_sclk_index = R600_POWER_LEVEL_LOW;
pi->hw.medium_sclk_index = R600_POWER_LEVEL_MEDIUM;
pi->hw.high_sclk_index = R600_POWER_LEVEL_HIGH;
}
static void rv6xx_calculate_memory_clock_stepping_parameters(struct radeon_device *rdev,
struct rv6xx_ps *state)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
pi->hw.mclks[R600_POWER_LEVEL_CTXSW] =
state->high.mclk;
pi->hw.mclks[R600_POWER_LEVEL_HIGH] =
state->high.mclk;
pi->hw.mclks[R600_POWER_LEVEL_MEDIUM] =
state->medium.mclk;
pi->hw.mclks[R600_POWER_LEVEL_LOW] =
state->low.mclk;
pi->hw.high_mclk_index = R600_POWER_LEVEL_HIGH;
if (state->high.mclk == state->medium.mclk)
pi->hw.medium_mclk_index =
pi->hw.high_mclk_index;
else
pi->hw.medium_mclk_index = R600_POWER_LEVEL_MEDIUM;
if (state->medium.mclk == state->low.mclk)
pi->hw.low_mclk_index =
pi->hw.medium_mclk_index;
else
pi->hw.low_mclk_index = R600_POWER_LEVEL_LOW;
}
static void rv6xx_calculate_voltage_stepping_parameters(struct radeon_device *rdev,
struct rv6xx_ps *state)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
pi->hw.vddc[R600_POWER_LEVEL_CTXSW] = state->high.vddc;
pi->hw.vddc[R600_POWER_LEVEL_HIGH] = state->high.vddc;
pi->hw.vddc[R600_POWER_LEVEL_MEDIUM] = state->medium.vddc;
pi->hw.vddc[R600_POWER_LEVEL_LOW] = state->low.vddc;
pi->hw.backbias[R600_POWER_LEVEL_CTXSW] =
(state->high.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ? true : false;
pi->hw.backbias[R600_POWER_LEVEL_HIGH] =
(state->high.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ? true : false;
pi->hw.backbias[R600_POWER_LEVEL_MEDIUM] =
(state->medium.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ? true : false;
pi->hw.backbias[R600_POWER_LEVEL_LOW] =
(state->low.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ? true : false;
pi->hw.pcie_gen2[R600_POWER_LEVEL_HIGH] =
(state->high.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? true : false;
pi->hw.pcie_gen2[R600_POWER_LEVEL_MEDIUM] =
(state->medium.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? true : false;
pi->hw.pcie_gen2[R600_POWER_LEVEL_LOW] =
(state->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? true : false;
pi->hw.high_vddc_index = R600_POWER_LEVEL_HIGH;
if ((state->high.vddc == state->medium.vddc) &&
((state->high.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ==
(state->medium.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE)))
pi->hw.medium_vddc_index =
pi->hw.high_vddc_index;
else
pi->hw.medium_vddc_index = R600_POWER_LEVEL_MEDIUM;
if ((state->medium.vddc == state->low.vddc) &&
((state->medium.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ==
(state->low.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE)))
pi->hw.low_vddc_index =
pi->hw.medium_vddc_index;
else
pi->hw.medium_vddc_index = R600_POWER_LEVEL_LOW;
}
static inline u32 rv6xx_calculate_vco_frequency(u32 ref_clock,
struct atom_clock_dividers *dividers,
u32 fb_divider_scale)
{
return ref_clock * ((dividers->fb_div & ~1) << fb_divider_scale) /
(dividers->ref_div + 1);
}
static inline u32 rv6xx_calculate_spread_spectrum_clk_v(u32 vco_freq, u32 ref_freq,
u32 ss_rate, u32 ss_percent,
u32 fb_divider_scale)
{
u32 fb_divider = vco_freq / ref_freq;
return (ss_percent * ss_rate * 4 * (fb_divider * fb_divider) /
(5375 * ((vco_freq * 10) / (4096 >> fb_divider_scale))));
}
static inline u32 rv6xx_calculate_spread_spectrum_clk_s(u32 ss_rate, u32 ref_freq)
{
return (((ref_freq * 10) / (ss_rate * 2)) - 1) / 4;
}
static void rv6xx_program_engine_spread_spectrum(struct radeon_device *rdev,
u32 clock, enum r600_power_level level)
{
u32 ref_clk = rdev->clock.spll.reference_freq;
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
struct atom_clock_dividers dividers;
struct radeon_atom_ss ss;
u32 vco_freq, clk_v, clk_s;
rv6xx_enable_engine_spread_spectrum(rdev, level, false);
if (clock && pi->sclk_ss) {
if (radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, clock, false, &dividers) == 0) {
vco_freq = rv6xx_calculate_vco_frequency(ref_clk, &dividers,
pi->fb_div_scale);
if (radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_ENGINE_SS, vco_freq)) {
clk_v = rv6xx_calculate_spread_spectrum_clk_v(vco_freq,
(ref_clk / (dividers.ref_div + 1)),
ss.rate,
ss.percentage,
pi->fb_div_scale);
clk_s = rv6xx_calculate_spread_spectrum_clk_s(ss.rate,
(ref_clk / (dividers.ref_div + 1)));
rv6xx_set_engine_spread_spectrum_clk_v(rdev, level, clk_v);
rv6xx_set_engine_spread_spectrum_clk_s(rdev, level, clk_s);
rv6xx_enable_engine_spread_spectrum(rdev, level, true);
}
}
}
}
static void rv6xx_program_sclk_spread_spectrum_parameters_except_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_program_engine_spread_spectrum(rdev,
pi->hw.sclks[R600_POWER_LEVEL_HIGH],
R600_POWER_LEVEL_HIGH);
rv6xx_program_engine_spread_spectrum(rdev,
pi->hw.sclks[R600_POWER_LEVEL_MEDIUM],
R600_POWER_LEVEL_MEDIUM);
}
static int rv6xx_program_mclk_stepping_entry(struct radeon_device *rdev,
u32 entry, u32 clock)
{
struct atom_clock_dividers dividers;
if (radeon_atom_get_clock_dividers(rdev, COMPUTE_MEMORY_PLL_PARAM, clock, false, &dividers))
return -EINVAL;
rv6xx_memory_clock_entry_set_reference_divider(rdev, entry, dividers.ref_div);
rv6xx_memory_clock_entry_set_feedback_divider(rdev, entry, dividers.fb_div);
rv6xx_memory_clock_entry_set_post_divider(rdev, entry, dividers.post_div);
if (dividers.enable_post_div)
rv6xx_memory_clock_entry_enable_post_divider(rdev, entry, true);
else
rv6xx_memory_clock_entry_enable_post_divider(rdev, entry, false);
return 0;
}
static void rv6xx_program_mclk_stepping_parameters_except_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
int i;
for (i = 1; i < R600_PM_NUMBER_OF_MCLKS; i++) {
if (pi->hw.mclks[i])
rv6xx_program_mclk_stepping_entry(rdev, i,
pi->hw.mclks[i]);
}
}
static void rv6xx_find_memory_clock_with_highest_vco(struct radeon_device *rdev,
u32 requested_memory_clock,
u32 ref_clk,
struct atom_clock_dividers *dividers,
u32 *vco_freq)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
struct atom_clock_dividers req_dividers;
u32 vco_freq_temp;
if (radeon_atom_get_clock_dividers(rdev, COMPUTE_MEMORY_PLL_PARAM,
requested_memory_clock, false, &req_dividers) == 0) {
vco_freq_temp = rv6xx_calculate_vco_frequency(ref_clk, &req_dividers,
pi->fb_div_scale);
if (vco_freq_temp > *vco_freq) {
*dividers = req_dividers;
*vco_freq = vco_freq_temp;
}
}
}
static void rv6xx_program_mclk_spread_spectrum_parameters(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
u32 ref_clk = rdev->clock.mpll.reference_freq;
struct atom_clock_dividers dividers;
struct radeon_atom_ss ss;
u32 vco_freq = 0, clk_v, clk_s;
rv6xx_enable_memory_spread_spectrum(rdev, false);
if (pi->mclk_ss) {
rv6xx_find_memory_clock_with_highest_vco(rdev,
pi->hw.mclks[pi->hw.high_mclk_index],
ref_clk,
&dividers,
&vco_freq);
rv6xx_find_memory_clock_with_highest_vco(rdev,
pi->hw.mclks[pi->hw.medium_mclk_index],
ref_clk,
&dividers,
&vco_freq);
rv6xx_find_memory_clock_with_highest_vco(rdev,
pi->hw.mclks[pi->hw.low_mclk_index],
ref_clk,
&dividers,
&vco_freq);
if (vco_freq) {
if (radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_MEMORY_SS, vco_freq)) {
clk_v = rv6xx_calculate_spread_spectrum_clk_v(vco_freq,
(ref_clk / (dividers.ref_div + 1)),
ss.rate,
ss.percentage,
pi->fb_div_scale);
clk_s = rv6xx_calculate_spread_spectrum_clk_s(ss.rate,
(ref_clk / (dividers.ref_div + 1)));
rv6xx_set_memory_spread_spectrum_clk_v(rdev, clk_v);
rv6xx_set_memory_spread_spectrum_clk_s(rdev, clk_s);
rv6xx_enable_memory_spread_spectrum(rdev, true);
}
}
}
}
static int rv6xx_program_voltage_stepping_entry(struct radeon_device *rdev,
u32 entry, u16 voltage)
{
u32 mask, set_pins;
int ret;
ret = radeon_atom_get_voltage_gpio_settings(rdev, voltage,
SET_VOLTAGE_TYPE_ASIC_VDDC,
&set_pins, &mask);
if (ret)
return ret;
r600_voltage_control_program_voltages(rdev, entry, set_pins);
return 0;
}
static void rv6xx_program_voltage_stepping_parameters_except_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
int i;
for (i = 1; i < R600_PM_NUMBER_OF_VOLTAGE_LEVELS; i++)
rv6xx_program_voltage_stepping_entry(rdev, i,
pi->hw.vddc[i]);
}
static void rv6xx_program_backbias_stepping_parameters_except_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (pi->hw.backbias[1])
WREG32_P(VID_UPPER_GPIO_CNTL, MEDIUM_BACKBIAS_VALUE, ~MEDIUM_BACKBIAS_VALUE);
else
WREG32_P(VID_UPPER_GPIO_CNTL, 0, ~MEDIUM_BACKBIAS_VALUE);
if (pi->hw.backbias[2])
WREG32_P(VID_UPPER_GPIO_CNTL, HIGH_BACKBIAS_VALUE, ~HIGH_BACKBIAS_VALUE);
else
WREG32_P(VID_UPPER_GPIO_CNTL, 0, ~HIGH_BACKBIAS_VALUE);
}
static void rv6xx_program_sclk_spread_spectrum_parameters_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_program_engine_spread_spectrum(rdev,
pi->hw.sclks[R600_POWER_LEVEL_LOW],
R600_POWER_LEVEL_LOW);
}
static void rv6xx_program_mclk_stepping_parameters_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (pi->hw.mclks[0])
rv6xx_program_mclk_stepping_entry(rdev, 0,
pi->hw.mclks[0]);
}
static void rv6xx_program_voltage_stepping_parameters_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_program_voltage_stepping_entry(rdev, 0,
pi->hw.vddc[0]);
}
static void rv6xx_program_backbias_stepping_parameters_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (pi->hw.backbias[0])
WREG32_P(VID_UPPER_GPIO_CNTL, LOW_BACKBIAS_VALUE, ~LOW_BACKBIAS_VALUE);
else
WREG32_P(VID_UPPER_GPIO_CNTL, 0, ~LOW_BACKBIAS_VALUE);
}
static u32 calculate_memory_refresh_rate(struct radeon_device *rdev,
u32 engine_clock)
{
u32 dram_rows, dram_refresh_rate;
u32 tmp;
tmp = (RREG32(RAMCFG) & NOOFROWS_MASK) >> NOOFROWS_SHIFT;
dram_rows = 1 << (tmp + 10);
dram_refresh_rate = 1 << ((RREG32(MC_SEQ_RESERVE_M) & 0x3) + 3);
return ((engine_clock * 10) * dram_refresh_rate / dram_rows - 32) / 64;
}
static void rv6xx_program_memory_timing_parameters(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
u32 sqm_ratio;
u32 arb_refresh_rate;
u32 high_clock;
if (pi->hw.sclks[R600_POWER_LEVEL_HIGH] <
(pi->hw.sclks[R600_POWER_LEVEL_LOW] * 0xFF / 0x40))
high_clock = pi->hw.sclks[R600_POWER_LEVEL_HIGH];
else
high_clock =
pi->hw.sclks[R600_POWER_LEVEL_LOW] * 0xFF / 0x40;
radeon_atom_set_engine_dram_timings(rdev, high_clock, 0);
sqm_ratio = (STATE0(64 * high_clock / pi->hw.sclks[R600_POWER_LEVEL_LOW]) |
STATE1(64 * high_clock / pi->hw.sclks[R600_POWER_LEVEL_MEDIUM]) |
STATE2(64 * high_clock / pi->hw.sclks[R600_POWER_LEVEL_HIGH]) |
STATE3(64 * high_clock / pi->hw.sclks[R600_POWER_LEVEL_HIGH]));
WREG32(SQM_RATIO, sqm_ratio);
arb_refresh_rate =
(POWERMODE0(calculate_memory_refresh_rate(rdev,
pi->hw.sclks[R600_POWER_LEVEL_LOW])) |
POWERMODE1(calculate_memory_refresh_rate(rdev,
pi->hw.sclks[R600_POWER_LEVEL_MEDIUM])) |
POWERMODE2(calculate_memory_refresh_rate(rdev,
pi->hw.sclks[R600_POWER_LEVEL_HIGH])) |
POWERMODE3(calculate_memory_refresh_rate(rdev,
pi->hw.sclks[R600_POWER_LEVEL_HIGH])));
WREG32(ARB_RFSH_RATE, arb_refresh_rate);
}
static void rv6xx_program_mpll_timing_parameters(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
r600_set_mpll_lock_time(rdev, R600_MPLLLOCKTIME_DFLT *
pi->mpll_ref_div);
r600_set_mpll_reset_time(rdev, R600_MPLLRESETTIME_DFLT);
}
static void rv6xx_program_bsp(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
u32 ref_clk = rdev->clock.spll.reference_freq;
r600_calculate_u_and_p(R600_ASI_DFLT,
ref_clk, 16,
&pi->bsp,
&pi->bsu);
r600_set_bsp(rdev, pi->bsu, pi->bsp);
}
static void rv6xx_program_at(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
r600_set_at(rdev,
(pi->hw.rp[0] * pi->bsp) / 200,
(pi->hw.rp[1] * pi->bsp) / 200,
(pi->hw.lp[2] * pi->bsp) / 200,
(pi->hw.lp[1] * pi->bsp) / 200);
}
static void rv6xx_program_git(struct radeon_device *rdev)
{
r600_set_git(rdev, R600_GICST_DFLT);
}
static void rv6xx_program_tp(struct radeon_device *rdev)
{
int i;
for (i = 0; i < R600_PM_NUMBER_OF_TC; i++)
r600_set_tc(rdev, i, r600_utc[i], r600_dtc[i]);
r600_select_td(rdev, R600_TD_DFLT);
}
static void rv6xx_program_vc(struct radeon_device *rdev)
{
r600_set_vrc(rdev, R600_VRC_DFLT);
}
static void rv6xx_clear_vc(struct radeon_device *rdev)
{
r600_set_vrc(rdev, 0);
}
static void rv6xx_program_tpp(struct radeon_device *rdev)
{
r600_set_tpu(rdev, R600_TPU_DFLT);
r600_set_tpc(rdev, R600_TPC_DFLT);
}
static void rv6xx_program_sstp(struct radeon_device *rdev)
{
r600_set_sstu(rdev, R600_SSTU_DFLT);
r600_set_sst(rdev, R600_SST_DFLT);
}
static void rv6xx_program_fcp(struct radeon_device *rdev)
{
r600_set_fctu(rdev, R600_FCTU_DFLT);
r600_set_fct(rdev, R600_FCT_DFLT);
}
static void rv6xx_program_vddc3d_parameters(struct radeon_device *rdev)
{
r600_set_vddc3d_oorsu(rdev, R600_VDDC3DOORSU_DFLT);
r600_set_vddc3d_oorphc(rdev, R600_VDDC3DOORPHC_DFLT);
r600_set_vddc3d_oorsdc(rdev, R600_VDDC3DOORSDC_DFLT);
r600_set_ctxcgtt3d_rphc(rdev, R600_CTXCGTT3DRPHC_DFLT);
r600_set_ctxcgtt3d_rsdc(rdev, R600_CTXCGTT3DRSDC_DFLT);
}
static void rv6xx_program_voltage_timing_parameters(struct radeon_device *rdev)
{
u32 rt;
r600_vid_rt_set_vru(rdev, R600_VRU_DFLT);
r600_vid_rt_set_vrt(rdev,
rv6xx_compute_count_for_delay(rdev,
rdev->pm.dpm.voltage_response_time,
R600_VRU_DFLT));
rt = rv6xx_compute_count_for_delay(rdev,
rdev->pm.dpm.backbias_response_time,
R600_VRU_DFLT);
rv6xx_vid_response_set_brt(rdev, (rt + 0x1F) >> 5);
}
static void rv6xx_program_engine_speed_parameters(struct radeon_device *rdev)
{
r600_vid_rt_set_ssu(rdev, R600_SPLLSTEPUNIT_DFLT);
rv6xx_enable_engine_feedback_and_reference_sync(rdev);
}
static u64 rv6xx_get_master_voltage_mask(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
u64 master_mask = 0;
int i;
for (i = 0; i < R600_PM_NUMBER_OF_VOLTAGE_LEVELS; i++) {
u32 tmp_mask, tmp_set_pins;
int ret;
ret = radeon_atom_get_voltage_gpio_settings(rdev,
pi->hw.vddc[i],
SET_VOLTAGE_TYPE_ASIC_VDDC,
&tmp_set_pins, &tmp_mask);
if (ret == 0)
master_mask |= tmp_mask;
}
return master_mask;
}
static void rv6xx_program_voltage_gpio_pins(struct radeon_device *rdev)
{
r600_voltage_control_enable_pins(rdev,
rv6xx_get_master_voltage_mask(rdev));
}
static void rv6xx_enable_static_voltage_control(struct radeon_device *rdev,
struct radeon_ps *new_ps,
bool enable)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps);
if (enable)
radeon_atom_set_voltage(rdev,
new_state->low.vddc,
SET_VOLTAGE_TYPE_ASIC_VDDC);
else
r600_voltage_control_deactivate_static_control(rdev,
rv6xx_get_master_voltage_mask(rdev));
}
static void rv6xx_enable_display_gap(struct radeon_device *rdev, bool enable)
{
if (enable) {
u32 tmp = (DISP1_GAP(R600_PM_DISPLAY_GAP_VBLANK_OR_WM) |
DISP2_GAP(R600_PM_DISPLAY_GAP_VBLANK_OR_WM) |
DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE) |
DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE) |
VBI_TIMER_COUNT(0x3FFF) |
VBI_TIMER_UNIT(7));
WREG32(CG_DISPLAY_GAP_CNTL, tmp);
WREG32_P(MCLK_PWRMGT_CNTL, USE_DISPLAY_GAP, ~USE_DISPLAY_GAP);
} else
WREG32_P(MCLK_PWRMGT_CNTL, 0, ~USE_DISPLAY_GAP);
}
static void rv6xx_program_power_level_enter_state(struct radeon_device *rdev)
{
r600_power_level_set_enter_index(rdev, R600_POWER_LEVEL_MEDIUM);
}
static void rv6xx_calculate_t(u32 l_f, u32 h_f, int h,
int d_l, int d_r, u8 *l, u8 *r)
{
int a_n, a_d, h_r, l_r;
h_r = d_l;
l_r = 100 - d_r;
a_n = (int)h_f * d_l + (int)l_f * (h - d_r);
a_d = (int)l_f * l_r + (int)h_f * h_r;
if (a_d != 0) {
*l = d_l - h_r * a_n / a_d;
*r = d_r + l_r * a_n / a_d;
}
}
static void rv6xx_calculate_ap(struct radeon_device *rdev,
struct rv6xx_ps *state)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
pi->hw.lp[0] = 0;
pi->hw.rp[R600_PM_NUMBER_OF_ACTIVITY_LEVELS - 1]
= 100;
rv6xx_calculate_t(state->low.sclk,
state->medium.sclk,
R600_AH_DFLT,
R600_LMP_DFLT,
R600_RLP_DFLT,
&pi->hw.lp[1],
&pi->hw.rp[0]);
rv6xx_calculate_t(state->medium.sclk,
state->high.sclk,
R600_AH_DFLT,
R600_LHP_DFLT,
R600_RMP_DFLT,
&pi->hw.lp[2],
&pi->hw.rp[1]);
}
static void rv6xx_calculate_stepping_parameters(struct radeon_device *rdev,
struct radeon_ps *new_ps)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps);
rv6xx_calculate_engine_speed_stepping_parameters(rdev, new_state);
rv6xx_calculate_memory_clock_stepping_parameters(rdev, new_state);
rv6xx_calculate_voltage_stepping_parameters(rdev, new_state);
rv6xx_calculate_ap(rdev, new_state);
}
static void rv6xx_program_stepping_parameters_except_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_program_mclk_stepping_parameters_except_lowest_entry(rdev);
if (pi->voltage_control)
rv6xx_program_voltage_stepping_parameters_except_lowest_entry(rdev);
rv6xx_program_backbias_stepping_parameters_except_lowest_entry(rdev);
rv6xx_program_sclk_spread_spectrum_parameters_except_lowest_entry(rdev);
rv6xx_program_mclk_spread_spectrum_parameters(rdev);
rv6xx_program_memory_timing_parameters(rdev);
}
static void rv6xx_program_stepping_parameters_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_program_mclk_stepping_parameters_lowest_entry(rdev);
if (pi->voltage_control)
rv6xx_program_voltage_stepping_parameters_lowest_entry(rdev);
rv6xx_program_backbias_stepping_parameters_lowest_entry(rdev);
rv6xx_program_sclk_spread_spectrum_parameters_lowest_entry(rdev);
}
static void rv6xx_program_power_level_low(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_LOW,
pi->hw.low_vddc_index);
r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_LOW,
pi->hw.low_mclk_index);
r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_LOW,
pi->hw.low_sclk_index);
r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_LOW,
R600_DISPLAY_WATERMARK_LOW);
r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_LOW,
pi->hw.pcie_gen2[R600_POWER_LEVEL_LOW]);
}
static void rv6xx_program_power_level_low_to_lowest_state(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_LOW, 0);
r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_LOW, 0);
r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_LOW, 0);
r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_LOW,
R600_DISPLAY_WATERMARK_LOW);
r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_LOW,
pi->hw.pcie_gen2[R600_POWER_LEVEL_LOW]);
}
static void rv6xx_program_power_level_medium(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_MEDIUM,
pi->hw.medium_vddc_index);
r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_MEDIUM,
pi->hw.medium_mclk_index);
r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_MEDIUM,
pi->hw.medium_sclk_index);
r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_MEDIUM,
R600_DISPLAY_WATERMARK_LOW);
r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_MEDIUM,
pi->hw.pcie_gen2[R600_POWER_LEVEL_MEDIUM]);
}
static void rv6xx_program_power_level_medium_for_transition(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_program_mclk_stepping_entry(rdev,
R600_POWER_LEVEL_CTXSW,
pi->hw.mclks[pi->hw.low_mclk_index]);
r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_MEDIUM, 1);
r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_MEDIUM,
R600_POWER_LEVEL_CTXSW);
r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_MEDIUM,
pi->hw.medium_sclk_index);
r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_MEDIUM,
R600_DISPLAY_WATERMARK_LOW);
rv6xx_enable_engine_spread_spectrum(rdev, R600_POWER_LEVEL_MEDIUM, false);
r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_MEDIUM,
pi->hw.pcie_gen2[R600_POWER_LEVEL_LOW]);
}
static void rv6xx_program_power_level_high(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_HIGH,
pi->hw.high_vddc_index);
r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_HIGH,
pi->hw.high_mclk_index);
r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_HIGH,
pi->hw.high_sclk_index);
r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_HIGH,
R600_DISPLAY_WATERMARK_HIGH);
r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_HIGH,
pi->hw.pcie_gen2[R600_POWER_LEVEL_HIGH]);
}
static void rv6xx_enable_backbias(struct radeon_device *rdev, bool enable)
{
if (enable)
WREG32_P(GENERAL_PWRMGT, BACKBIAS_PAD_EN | BACKBIAS_DPM_CNTL,
~(BACKBIAS_PAD_EN | BACKBIAS_DPM_CNTL));
else
WREG32_P(GENERAL_PWRMGT, 0,
~(BACKBIAS_VALUE | BACKBIAS_PAD_EN | BACKBIAS_DPM_CNTL));
}
static void rv6xx_program_display_gap(struct radeon_device *rdev)
{
u32 tmp = RREG32(CG_DISPLAY_GAP_CNTL);
tmp &= ~(DISP1_GAP_MCHG_MASK | DISP2_GAP_MCHG_MASK);
if (rdev->pm.dpm.new_active_crtcs & 1) {
tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_VBLANK);
tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE);
} else if (rdev->pm.dpm.new_active_crtcs & 2) {
tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE);
tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_VBLANK);
} else {
tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE);
tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE);
}
WREG32(CG_DISPLAY_GAP_CNTL, tmp);
}
static void rv6xx_set_sw_voltage_to_safe(struct radeon_device *rdev,
struct radeon_ps *new_ps,
struct radeon_ps *old_ps)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps);
struct rv6xx_ps *old_state = rv6xx_get_ps(old_ps);
u16 safe_voltage;
safe_voltage = (new_state->low.vddc >= old_state->low.vddc) ?
new_state->low.vddc : old_state->low.vddc;
rv6xx_program_voltage_stepping_entry(rdev, R600_POWER_LEVEL_CTXSW,
safe_voltage);
WREG32_P(GENERAL_PWRMGT, SW_GPIO_INDEX(R600_POWER_LEVEL_CTXSW),
~SW_GPIO_INDEX_MASK);
}
static void rv6xx_set_sw_voltage_to_low(struct radeon_device *rdev,
struct radeon_ps *old_ps)
{
struct rv6xx_ps *old_state = rv6xx_get_ps(old_ps);
rv6xx_program_voltage_stepping_entry(rdev, R600_POWER_LEVEL_CTXSW,
old_state->low.vddc);
WREG32_P(GENERAL_PWRMGT, SW_GPIO_INDEX(R600_POWER_LEVEL_CTXSW),
~SW_GPIO_INDEX_MASK);
}
static void rv6xx_set_safe_backbias(struct radeon_device *rdev,
struct radeon_ps *new_ps,
struct radeon_ps *old_ps)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps);
struct rv6xx_ps *old_state = rv6xx_get_ps(old_ps);
if ((new_state->low.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) &&
(old_state->low.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE))
WREG32_P(GENERAL_PWRMGT, BACKBIAS_VALUE, ~BACKBIAS_VALUE);
else
WREG32_P(GENERAL_PWRMGT, 0, ~BACKBIAS_VALUE);
}
static void rv6xx_set_safe_pcie_gen2(struct radeon_device *rdev,
struct radeon_ps *new_ps,
struct radeon_ps *old_ps)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps);
struct rv6xx_ps *old_state = rv6xx_get_ps(old_ps);
if ((new_state->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) !=
(old_state->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2))
rv6xx_force_pcie_gen1(rdev);
}
static void rv6xx_enable_dynamic_voltage_control(struct radeon_device *rdev,
bool enable)
{
if (enable)
WREG32_P(GENERAL_PWRMGT, VOLT_PWRMGT_EN, ~VOLT_PWRMGT_EN);
else
WREG32_P(GENERAL_PWRMGT, 0, ~VOLT_PWRMGT_EN);
}
static void rv6xx_enable_dynamic_backbias_control(struct radeon_device *rdev,
bool enable)
{
if (enable)
WREG32_P(GENERAL_PWRMGT, BACKBIAS_DPM_CNTL, ~BACKBIAS_DPM_CNTL);
else
WREG32_P(GENERAL_PWRMGT, 0, ~BACKBIAS_DPM_CNTL);
}
static int rv6xx_step_sw_voltage(struct radeon_device *rdev,
u16 initial_voltage,
u16 target_voltage)
{
u16 current_voltage;
u16 true_target_voltage;
u16 voltage_step;
int signed_voltage_step;
if ((radeon_atom_get_voltage_step(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC,
&voltage_step)) ||
(radeon_atom_round_to_true_voltage(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC,
initial_voltage, &current_voltage)) ||
(radeon_atom_round_to_true_voltage(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC,
target_voltage, &true_target_voltage)))
return -EINVAL;
if (true_target_voltage < current_voltage)
signed_voltage_step = -(int)voltage_step;
else
signed_voltage_step = voltage_step;
while (current_voltage != true_target_voltage) {
current_voltage += signed_voltage_step;
rv6xx_program_voltage_stepping_entry(rdev, R600_POWER_LEVEL_CTXSW,
current_voltage);
msleep((rdev->pm.dpm.voltage_response_time + 999) / 1000);
}
return 0;
}
static int rv6xx_step_voltage_if_increasing(struct radeon_device *rdev,
struct radeon_ps *new_ps,
struct radeon_ps *old_ps)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps);
struct rv6xx_ps *old_state = rv6xx_get_ps(old_ps);
if (new_state->low.vddc > old_state->low.vddc)
return rv6xx_step_sw_voltage(rdev,
old_state->low.vddc,
new_state->low.vddc);
return 0;
}
static int rv6xx_step_voltage_if_decreasing(struct radeon_device *rdev,
struct radeon_ps *new_ps,
struct radeon_ps *old_ps)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps);
struct rv6xx_ps *old_state = rv6xx_get_ps(old_ps);
if (new_state->low.vddc < old_state->low.vddc)
return rv6xx_step_sw_voltage(rdev,
old_state->low.vddc,
new_state->low.vddc);
else
return 0;
}
static void rv6xx_enable_high(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if ((pi->restricted_levels < 1) ||
(pi->restricted_levels == 3))
r600_power_level_enable(rdev, R600_POWER_LEVEL_HIGH, true);
}
static void rv6xx_enable_medium(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (pi->restricted_levels < 2)
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, true);
}
static void rv6xx_set_dpm_event_sources(struct radeon_device *rdev, u32 sources)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
bool want_thermal_protection;
enum radeon_dpm_event_src dpm_event_src;
switch (sources) {
case 0:
default:
want_thermal_protection = false;
break;
case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_DIGITAL;
break;
case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_EXTERNAL;
break;
case ((1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL) |
(1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL)):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_DIGIAL_OR_EXTERNAL;
break;
}
if (want_thermal_protection) {
WREG32_P(CG_THERMAL_CTRL, DPM_EVENT_SRC(dpm_event_src), ~DPM_EVENT_SRC_MASK);
if (pi->thermal_protection)
WREG32_P(GENERAL_PWRMGT, 0, ~THERMAL_PROTECTION_DIS);
} else {
WREG32_P(GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, ~THERMAL_PROTECTION_DIS);
}
}
static void rv6xx_enable_auto_throttle_source(struct radeon_device *rdev,
enum radeon_dpm_auto_throttle_src source,
bool enable)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (enable) {
if (!(pi->active_auto_throttle_sources & (1 << source))) {
pi->active_auto_throttle_sources |= 1 << source;
rv6xx_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources);
}
} else {
if (pi->active_auto_throttle_sources & (1 << source)) {
pi->active_auto_throttle_sources &= ~(1 << source);
rv6xx_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources);
}
}
}
static void rv6xx_enable_thermal_protection(struct radeon_device *rdev,
bool enable)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (pi->active_auto_throttle_sources)
r600_enable_thermal_protection(rdev, enable);
}
static void rv6xx_generate_transition_stepping(struct radeon_device *rdev,
struct radeon_ps *new_ps,
struct radeon_ps *old_ps)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps);
struct rv6xx_ps *old_state = rv6xx_get_ps(old_ps);
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_generate_steps(rdev,
old_state->low.sclk,
new_state->low.sclk,
0, &pi->hw.medium_sclk_index);
}
static void rv6xx_generate_low_step(struct radeon_device *rdev,
struct radeon_ps *new_ps)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps);
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
pi->hw.low_sclk_index = 0;
rv6xx_generate_single_step(rdev,
new_state->low.sclk,
0);
}
static void rv6xx_invalidate_intermediate_steps(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_invalidate_intermediate_steps_range(rdev, 0,
pi->hw.medium_sclk_index);
}
static void rv6xx_generate_stepping_table(struct radeon_device *rdev,
struct radeon_ps *new_ps)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps);
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
pi->hw.low_sclk_index = 0;
rv6xx_generate_steps(rdev,
new_state->low.sclk,
new_state->medium.sclk,
0,
&pi->hw.medium_sclk_index);
rv6xx_generate_steps(rdev,
new_state->medium.sclk,
new_state->high.sclk,
pi->hw.medium_sclk_index,
&pi->hw.high_sclk_index);
}
static void rv6xx_enable_spread_spectrum(struct radeon_device *rdev,
bool enable)
{
if (enable)
rv6xx_enable_dynamic_spread_spectrum(rdev, true);
else {
rv6xx_enable_engine_spread_spectrum(rdev, R600_POWER_LEVEL_LOW, false);
rv6xx_enable_engine_spread_spectrum(rdev, R600_POWER_LEVEL_MEDIUM, false);
rv6xx_enable_engine_spread_spectrum(rdev, R600_POWER_LEVEL_HIGH, false);
rv6xx_enable_dynamic_spread_spectrum(rdev, false);
rv6xx_enable_memory_spread_spectrum(rdev, false);
}
}
static void rv6xx_reset_lvtm_data_sync(struct radeon_device *rdev)
{
if (ASIC_IS_DCE3(rdev))
WREG32_P(DCE3_LVTMA_DATA_SYNCHRONIZATION, LVTMA_PFREQCHG, ~LVTMA_PFREQCHG);
else
WREG32_P(LVTMA_DATA_SYNCHRONIZATION, LVTMA_PFREQCHG, ~LVTMA_PFREQCHG);
}
static void rv6xx_enable_dynamic_pcie_gen2(struct radeon_device *rdev,
struct radeon_ps *new_ps,
bool enable)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps);
if (enable) {
rv6xx_enable_bif_dynamic_pcie_gen2(rdev, true);
rv6xx_enable_pcie_gen2_support(rdev);
r600_enable_dynamic_pcie_gen2(rdev, true);
} else {
if (!(new_state->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2))
rv6xx_force_pcie_gen1(rdev);
rv6xx_enable_bif_dynamic_pcie_gen2(rdev, false);
r600_enable_dynamic_pcie_gen2(rdev, false);
}
}
static void rv6xx_set_uvd_clock_before_set_eng_clock(struct radeon_device *rdev,
struct radeon_ps *new_ps,
struct radeon_ps *old_ps)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps);
struct rv6xx_ps *current_state = rv6xx_get_ps(old_ps);
if ((new_ps->vclk == old_ps->vclk) &&
(new_ps->dclk == old_ps->dclk))
return;
if (new_state->high.sclk >= current_state->high.sclk)
return;
radeon_set_uvd_clocks(rdev, new_ps->vclk, new_ps->dclk);
}
static void rv6xx_set_uvd_clock_after_set_eng_clock(struct radeon_device *rdev,
struct radeon_ps *new_ps,
struct radeon_ps *old_ps)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(new_ps);
struct rv6xx_ps *current_state = rv6xx_get_ps(old_ps);
if ((new_ps->vclk == old_ps->vclk) &&
(new_ps->dclk == old_ps->dclk))
return;
if (new_state->high.sclk < current_state->high.sclk)
return;
radeon_set_uvd_clocks(rdev, new_ps->vclk, new_ps->dclk);
}
int rv6xx_dpm_enable(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps;
if (r600_dynamicpm_enabled(rdev))
return -EINVAL;
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS)
rv6xx_enable_backbias(rdev, true);
if (pi->dynamic_ss)
rv6xx_enable_spread_spectrum(rdev, true);
rv6xx_program_mpll_timing_parameters(rdev);
rv6xx_program_bsp(rdev);
rv6xx_program_git(rdev);
rv6xx_program_tp(rdev);
rv6xx_program_tpp(rdev);
rv6xx_program_sstp(rdev);
rv6xx_program_fcp(rdev);
rv6xx_program_vddc3d_parameters(rdev);
rv6xx_program_voltage_timing_parameters(rdev);
rv6xx_program_engine_speed_parameters(rdev);
rv6xx_enable_display_gap(rdev, true);
if (pi->display_gap == false)
rv6xx_enable_display_gap(rdev, false);
rv6xx_program_power_level_enter_state(rdev);
rv6xx_calculate_stepping_parameters(rdev, boot_ps);
if (pi->voltage_control)
rv6xx_program_voltage_gpio_pins(rdev);
rv6xx_generate_stepping_table(rdev, boot_ps);
rv6xx_program_stepping_parameters_except_lowest_entry(rdev);
rv6xx_program_stepping_parameters_lowest_entry(rdev);
rv6xx_program_power_level_low(rdev);
rv6xx_program_power_level_medium(rdev);
rv6xx_program_power_level_high(rdev);
rv6xx_program_vc(rdev);
rv6xx_program_at(rdev);
r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, true);
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, true);
r600_power_level_enable(rdev, R600_POWER_LEVEL_HIGH, true);
rv6xx_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, true);
r600_start_dpm(rdev);
if (pi->voltage_control)
rv6xx_enable_static_voltage_control(rdev, boot_ps, false);
if (pi->dynamic_pcie_gen2)
rv6xx_enable_dynamic_pcie_gen2(rdev, boot_ps, true);
if (pi->gfx_clock_gating)
r600_gfx_clockgating_enable(rdev, true);
return 0;
}
void rv6xx_dpm_disable(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps;
if (!r600_dynamicpm_enabled(rdev))
return;
r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, true);
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, true);
rv6xx_enable_display_gap(rdev, false);
rv6xx_clear_vc(rdev);
r600_set_at(rdev, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF);
if (pi->thermal_protection)
r600_enable_thermal_protection(rdev, false);
r600_wait_for_power_level(rdev, R600_POWER_LEVEL_LOW);
r600_power_level_enable(rdev, R600_POWER_LEVEL_HIGH, false);
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, false);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS)
rv6xx_enable_backbias(rdev, false);
rv6xx_enable_spread_spectrum(rdev, false);
if (pi->voltage_control)
rv6xx_enable_static_voltage_control(rdev, boot_ps, true);
if (pi->dynamic_pcie_gen2)
rv6xx_enable_dynamic_pcie_gen2(rdev, boot_ps, false);
if (rdev->irq.installed &&
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
rdev->irq.dpm_thermal = false;
radeon_irq_set(rdev);
}
if (pi->gfx_clock_gating)
r600_gfx_clockgating_enable(rdev, false);
r600_stop_dpm(rdev);
}
int rv6xx_dpm_set_power_state(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
struct radeon_ps *new_ps = rdev->pm.dpm.requested_ps;
struct radeon_ps *old_ps = rdev->pm.dpm.current_ps;
int ret;
pi->restricted_levels = 0;
rv6xx_set_uvd_clock_before_set_eng_clock(rdev, new_ps, old_ps);
rv6xx_clear_vc(rdev);
r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, true);
r600_set_at(rdev, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF);
if (pi->thermal_protection)
r600_enable_thermal_protection(rdev, false);
r600_wait_for_power_level(rdev, R600_POWER_LEVEL_LOW);
r600_power_level_enable(rdev, R600_POWER_LEVEL_HIGH, false);
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, false);
rv6xx_generate_transition_stepping(rdev, new_ps, old_ps);
rv6xx_program_power_level_medium_for_transition(rdev);
if (pi->voltage_control) {
rv6xx_set_sw_voltage_to_safe(rdev, new_ps, old_ps);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC)
rv6xx_set_sw_voltage_to_low(rdev, old_ps);
}
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS)
rv6xx_set_safe_backbias(rdev, new_ps, old_ps);
if (pi->dynamic_pcie_gen2)
rv6xx_set_safe_pcie_gen2(rdev, new_ps, old_ps);
if (pi->voltage_control)
rv6xx_enable_dynamic_voltage_control(rdev, false);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS)
rv6xx_enable_dynamic_backbias_control(rdev, false);
if (pi->voltage_control) {
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC)
rv6xx_step_voltage_if_increasing(rdev, new_ps, old_ps);
msleep((rdev->pm.dpm.voltage_response_time + 999) / 1000);
}
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, true);
r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, false);
r600_wait_for_power_level_unequal(rdev, R600_POWER_LEVEL_LOW);
rv6xx_generate_low_step(rdev, new_ps);
rv6xx_invalidate_intermediate_steps(rdev);
rv6xx_calculate_stepping_parameters(rdev, new_ps);
rv6xx_program_stepping_parameters_lowest_entry(rdev);
rv6xx_program_power_level_low_to_lowest_state(rdev);
r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, true);
r600_wait_for_power_level(rdev, R600_POWER_LEVEL_LOW);
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, false);
if (pi->voltage_control) {
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC) {
ret = rv6xx_step_voltage_if_decreasing(rdev, new_ps, old_ps);
if (ret)
return ret;
}
rv6xx_enable_dynamic_voltage_control(rdev, true);
}
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS)
rv6xx_enable_dynamic_backbias_control(rdev, true);
if (pi->dynamic_pcie_gen2)
rv6xx_enable_dynamic_pcie_gen2(rdev, new_ps, true);
rv6xx_reset_lvtm_data_sync(rdev);
rv6xx_generate_stepping_table(rdev, new_ps);
rv6xx_program_stepping_parameters_except_lowest_entry(rdev);
rv6xx_program_power_level_low(rdev);
rv6xx_program_power_level_medium(rdev);
rv6xx_program_power_level_high(rdev);
rv6xx_enable_medium(rdev);
rv6xx_enable_high(rdev);
if (pi->thermal_protection)
rv6xx_enable_thermal_protection(rdev, true);
rv6xx_program_vc(rdev);
rv6xx_program_at(rdev);
rv6xx_set_uvd_clock_after_set_eng_clock(rdev, new_ps, old_ps);
return 0;
}
void rv6xx_setup_asic(struct radeon_device *rdev)
{
r600_enable_acpi_pm(rdev);
if (radeon_aspm != 0) {
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_ASPM_L0s)
rv6xx_enable_l0s(rdev);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_ASPM_L1)
rv6xx_enable_l1(rdev);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1)
rv6xx_enable_pll_sleep_in_l1(rdev);
}
}
void rv6xx_dpm_display_configuration_changed(struct radeon_device *rdev)
{
rv6xx_program_display_gap(rdev);
}
union power_info {
struct _ATOM_POWERPLAY_INFO info;
struct _ATOM_POWERPLAY_INFO_V2 info_2;
struct _ATOM_POWERPLAY_INFO_V3 info_3;
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
};
union pplib_clock_info {
struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
};
union pplib_power_state {
struct _ATOM_PPLIB_STATE v1;
struct _ATOM_PPLIB_STATE_V2 v2;
};
static void rv6xx_parse_pplib_non_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps,
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info)
{
rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
rps->class = le16_to_cpu(non_clock_info->usClassification);
rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
if (r600_is_uvd_state(rps->class, rps->class2)) {
rps->vclk = RV6XX_DEFAULT_VCLK_FREQ;
rps->dclk = RV6XX_DEFAULT_DCLK_FREQ;
} else {
rps->vclk = 0;
rps->dclk = 0;
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT)
rdev->pm.dpm.boot_ps = rps;
if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
rdev->pm.dpm.uvd_ps = rps;
}
static void rv6xx_parse_pplib_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps, int index,
union pplib_clock_info *clock_info)
{
struct rv6xx_ps *ps = rv6xx_get_ps(rps);
u32 sclk, mclk;
u16 vddc;
struct rv6xx_pl *pl;
switch (index) {
case 0:
pl = &ps->low;
break;
case 1:
pl = &ps->medium;
break;
case 2:
default:
pl = &ps->high;
break;
}
sclk = le16_to_cpu(clock_info->r600.usEngineClockLow);
sclk |= clock_info->r600.ucEngineClockHigh << 16;
mclk = le16_to_cpu(clock_info->r600.usMemoryClockLow);
mclk |= clock_info->r600.ucMemoryClockHigh << 16;
pl->mclk = mclk;
pl->sclk = sclk;
pl->vddc = le16_to_cpu(clock_info->r600.usVDDC);
pl->flags = le32_to_cpu(clock_info->r600.ulFlags);
/* patch up vddc if necessary */
if (pl->vddc == 0xff01) {
if (radeon_atom_get_max_vddc(rdev, 0, 0, &vddc) == 0)
pl->vddc = vddc;
}
/* fix up pcie gen2 */
if (pl->flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) {
if ((rdev->family == CHIP_RV610) || (rdev->family == CHIP_RV630)) {
if (pl->vddc < 1100)
pl->flags &= ~ATOM_PPLIB_R600_FLAGS_PCIEGEN2;
}
}
/* patch up boot state */
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
u16 vddc, vddci, mvdd;
radeon_atombios_get_default_voltages(rdev, &vddc, &vddci, &mvdd);
pl->mclk = rdev->clock.default_mclk;
pl->sclk = rdev->clock.default_sclk;
pl->vddc = vddc;
}
}
static int rv6xx_parse_power_table(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
union pplib_power_state *power_state;
int i, j;
union pplib_clock_info *clock_info;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
struct rv6xx_ps *ps;
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) *
power_info->pplib.ucNumStates, GFP_KERNEL);
if (!rdev->pm.dpm.ps)
return -ENOMEM;
rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps);
rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime);
rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime);
for (i = 0; i < power_info->pplib.ucNumStates; i++) {
power_state = (union pplib_power_state *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usStateArrayOffset) +
i * power_info->pplib.ucStateEntrySize);
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset) +
(power_state->v1.ucNonClockStateIndex *
power_info->pplib.ucNonClockSize));
if (power_info->pplib.ucStateEntrySize - 1) {
u8 *idx;
ps = kzalloc(sizeof(struct rv6xx_ps), GFP_KERNEL);
if (ps == NULL) {
kfree(rdev->pm.dpm.ps);
return -ENOMEM;
}
rdev->pm.dpm.ps[i].ps_priv = ps;
rv6xx_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
non_clock_info);
idx = (u8 *)&power_state->v1.ucClockStateIndices[0];
for (j = 0; j < (power_info->pplib.ucStateEntrySize - 1); j++) {
clock_info = (union pplib_clock_info *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset) +
(idx[j] * power_info->pplib.ucClockInfoSize));
rv6xx_parse_pplib_clock_info(rdev,
&rdev->pm.dpm.ps[i], j,
clock_info);
}
}
}
rdev->pm.dpm.num_ps = power_info->pplib.ucNumStates;
return 0;
}
int rv6xx_dpm_init(struct radeon_device *rdev)
{
struct radeon_atom_ss ss;
struct atom_clock_dividers dividers;
struct rv6xx_power_info *pi;
int ret;
pi = kzalloc(sizeof(struct rv6xx_power_info), GFP_KERNEL);
if (pi == NULL)
return -ENOMEM;
rdev->pm.dpm.priv = pi;
ret = rv6xx_parse_power_table(rdev);
if (ret)
return ret;
if (rdev->pm.dpm.voltage_response_time == 0)
rdev->pm.dpm.voltage_response_time = R600_VOLTAGERESPONSETIME_DFLT;
if (rdev->pm.dpm.backbias_response_time == 0)
rdev->pm.dpm.backbias_response_time = R600_BACKBIASRESPONSETIME_DFLT;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
0, false, &dividers);
if (ret)
pi->spll_ref_div = dividers.ref_div + 1;
else
pi->spll_ref_div = R600_REFERENCEDIVIDER_DFLT;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_MEMORY_PLL_PARAM,
0, false, &dividers);
if (ret)
pi->mpll_ref_div = dividers.ref_div + 1;
else
pi->mpll_ref_div = R600_REFERENCEDIVIDER_DFLT;
if (rdev->family >= CHIP_RV670)
pi->fb_div_scale = 1;
else
pi->fb_div_scale = 0;
pi->voltage_control =
radeon_atom_is_voltage_gpio(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC, 0);
pi->gfx_clock_gating = true;
pi->sclk_ss = radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_ENGINE_SS, 0);
pi->mclk_ss = radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_MEMORY_SS, 0);
/* Disable sclk ss, causes hangs on a lot of systems */
pi->sclk_ss = false;
if (pi->sclk_ss || pi->mclk_ss)
pi->dynamic_ss = true;
else
pi->dynamic_ss = false;
pi->dynamic_pcie_gen2 = true;
if (pi->gfx_clock_gating &&
(rdev->pm.int_thermal_type != THERMAL_TYPE_NONE))
pi->thermal_protection = true;
else
pi->thermal_protection = false;
pi->display_gap = true;
return 0;
}
void rv6xx_dpm_print_power_state(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct rv6xx_ps *ps = rv6xx_get_ps(rps);
struct rv6xx_pl *pl;
r600_dpm_print_class_info(rps->class, rps->class2);
r600_dpm_print_cap_info(rps->caps);
printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
pl = &ps->low;
printk("\t\tpower level 0 sclk: %u mclk: %u vddc: %u\n",
pl->sclk, pl->mclk, pl->vddc);
pl = &ps->medium;
printk("\t\tpower level 1 sclk: %u mclk: %u vddc: %u\n",
pl->sclk, pl->mclk, pl->vddc);
pl = &ps->high;
printk("\t\tpower level 2 sclk: %u mclk: %u vddc: %u\n",
pl->sclk, pl->mclk, pl->vddc);
r600_dpm_print_ps_status(rdev, rps);
}
void rv6xx_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
struct seq_file *m)
{
struct radeon_ps *rps = rdev->pm.dpm.current_ps;
struct rv6xx_ps *ps = rv6xx_get_ps(rps);
struct rv6xx_pl *pl;
u32 current_index =
(RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_PROFILE_INDEX_MASK) >>
CURRENT_PROFILE_INDEX_SHIFT;
if (current_index > 2) {
seq_printf(m, "invalid dpm profile %d\n", current_index);
} else {
if (current_index == 0)
pl = &ps->low;
else if (current_index == 1)
pl = &ps->medium;
else /* current_index == 2 */
pl = &ps->high;
seq_printf(m, "uvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
seq_printf(m, "power level %d sclk: %u mclk: %u vddc: %u\n",
current_index, pl->sclk, pl->mclk, pl->vddc);
}
}
void rv6xx_dpm_fini(struct radeon_device *rdev)
{
int i;
for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
kfree(rdev->pm.dpm.ps[i].ps_priv);
}
kfree(rdev->pm.dpm.ps);
kfree(rdev->pm.dpm.priv);
}
u32 rv6xx_dpm_get_sclk(struct radeon_device *rdev, bool low)
{
struct rv6xx_ps *requested_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
if (low)
return requested_state->low.sclk;
else
return requested_state->high.sclk;
}
u32 rv6xx_dpm_get_mclk(struct radeon_device *rdev, bool low)
{
struct rv6xx_ps *requested_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
if (low)
return requested_state->low.mclk;
else
return requested_state->high.mclk;
}
int rv6xx_dpm_force_performance_level(struct radeon_device *rdev,
enum radeon_dpm_forced_level level)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
pi->restricted_levels = 3;
} else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
pi->restricted_levels = 2;
} else {
pi->restricted_levels = 0;
}
rv6xx_clear_vc(rdev);
r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, true);
r600_set_at(rdev, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF);
r600_wait_for_power_level(rdev, R600_POWER_LEVEL_LOW);
r600_power_level_enable(rdev, R600_POWER_LEVEL_HIGH, false);
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, false);
rv6xx_enable_medium(rdev);
rv6xx_enable_high(rdev);
if (pi->restricted_levels == 3)
r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, false);
rv6xx_program_vc(rdev);
rv6xx_program_at(rdev);
rdev->pm.dpm.forced_level = level;
return 0;
}