418 lines
9.0 KiB
C
418 lines
9.0 KiB
C
|
/*
|
||
|
* Performance events ring-buffer code:
|
||
|
*
|
||
|
* Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
|
||
|
* Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
|
||
|
* Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
|
||
|
* Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
||
|
*
|
||
|
* For licensing details see kernel-base/COPYING
|
||
|
*/
|
||
|
|
||
|
#include <linux/perf_event.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/circ_buf.h>
|
||
|
|
||
|
#include "internal.h"
|
||
|
|
||
|
static void perf_output_wakeup(struct perf_output_handle *handle)
|
||
|
{
|
||
|
atomic_set(&handle->rb->poll, POLL_IN);
|
||
|
|
||
|
handle->event->pending_wakeup = 1;
|
||
|
irq_work_queue(&handle->event->pending);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We need to ensure a later event_id doesn't publish a head when a former
|
||
|
* event isn't done writing. However since we need to deal with NMIs we
|
||
|
* cannot fully serialize things.
|
||
|
*
|
||
|
* We only publish the head (and generate a wakeup) when the outer-most
|
||
|
* event completes.
|
||
|
*/
|
||
|
static void perf_output_get_handle(struct perf_output_handle *handle)
|
||
|
{
|
||
|
struct ring_buffer *rb = handle->rb;
|
||
|
|
||
|
preempt_disable();
|
||
|
local_inc(&rb->nest);
|
||
|
handle->wakeup = local_read(&rb->wakeup);
|
||
|
}
|
||
|
|
||
|
static void perf_output_put_handle(struct perf_output_handle *handle)
|
||
|
{
|
||
|
struct ring_buffer *rb = handle->rb;
|
||
|
unsigned long head;
|
||
|
|
||
|
again:
|
||
|
head = local_read(&rb->head);
|
||
|
|
||
|
/*
|
||
|
* IRQ/NMI can happen here, which means we can miss a head update.
|
||
|
*/
|
||
|
|
||
|
if (!local_dec_and_test(&rb->nest))
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* Since the mmap() consumer (userspace) can run on a different CPU:
|
||
|
*
|
||
|
* kernel user
|
||
|
*
|
||
|
* if (LOAD ->data_tail) { LOAD ->data_head
|
||
|
* (A) smp_rmb() (C)
|
||
|
* STORE $data LOAD $data
|
||
|
* smp_wmb() (B) smp_mb() (D)
|
||
|
* STORE ->data_head STORE ->data_tail
|
||
|
* }
|
||
|
*
|
||
|
* Where A pairs with D, and B pairs with C.
|
||
|
*
|
||
|
* In our case (A) is a control dependency that separates the load of
|
||
|
* the ->data_tail and the stores of $data. In case ->data_tail
|
||
|
* indicates there is no room in the buffer to store $data we do not.
|
||
|
*
|
||
|
* D needs to be a full barrier since it separates the data READ
|
||
|
* from the tail WRITE.
|
||
|
*
|
||
|
* For B a WMB is sufficient since it separates two WRITEs, and for C
|
||
|
* an RMB is sufficient since it separates two READs.
|
||
|
*
|
||
|
* See perf_output_begin().
|
||
|
*/
|
||
|
smp_wmb(); /* B, matches C */
|
||
|
rb->user_page->data_head = head;
|
||
|
|
||
|
/*
|
||
|
* Now check if we missed an update -- rely on previous implied
|
||
|
* compiler barriers to force a re-read.
|
||
|
*/
|
||
|
if (unlikely(head != local_read(&rb->head))) {
|
||
|
local_inc(&rb->nest);
|
||
|
goto again;
|
||
|
}
|
||
|
|
||
|
if (handle->wakeup != local_read(&rb->wakeup))
|
||
|
perf_output_wakeup(handle);
|
||
|
|
||
|
out:
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
int perf_output_begin(struct perf_output_handle *handle,
|
||
|
struct perf_event *event, unsigned int size)
|
||
|
{
|
||
|
struct ring_buffer *rb;
|
||
|
unsigned long tail, offset, head;
|
||
|
int have_lost, page_shift;
|
||
|
struct {
|
||
|
struct perf_event_header header;
|
||
|
u64 id;
|
||
|
u64 lost;
|
||
|
} lost_event;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
/*
|
||
|
* For inherited events we send all the output towards the parent.
|
||
|
*/
|
||
|
if (event->parent)
|
||
|
event = event->parent;
|
||
|
|
||
|
rb = rcu_dereference(event->rb);
|
||
|
if (unlikely(!rb))
|
||
|
goto out;
|
||
|
|
||
|
if (unlikely(!rb->nr_pages))
|
||
|
goto out;
|
||
|
|
||
|
handle->rb = rb;
|
||
|
handle->event = event;
|
||
|
|
||
|
have_lost = local_read(&rb->lost);
|
||
|
if (unlikely(have_lost)) {
|
||
|
size += sizeof(lost_event);
|
||
|
if (event->attr.sample_id_all)
|
||
|
size += event->id_header_size;
|
||
|
}
|
||
|
|
||
|
perf_output_get_handle(handle);
|
||
|
|
||
|
do {
|
||
|
tail = ACCESS_ONCE(rb->user_page->data_tail);
|
||
|
offset = head = local_read(&rb->head);
|
||
|
if (!rb->overwrite &&
|
||
|
unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
|
||
|
goto fail;
|
||
|
|
||
|
/*
|
||
|
* The above forms a control dependency barrier separating the
|
||
|
* @tail load above from the data stores below. Since the @tail
|
||
|
* load is required to compute the branch to fail below.
|
||
|
*
|
||
|
* A, matches D; the full memory barrier userspace SHOULD issue
|
||
|
* after reading the data and before storing the new tail
|
||
|
* position.
|
||
|
*
|
||
|
* See perf_output_put_handle().
|
||
|
*/
|
||
|
|
||
|
head += size;
|
||
|
} while (local_cmpxchg(&rb->head, offset, head) != offset);
|
||
|
|
||
|
/*
|
||
|
* We rely on the implied barrier() by local_cmpxchg() to ensure
|
||
|
* none of the data stores below can be lifted up by the compiler.
|
||
|
*/
|
||
|
|
||
|
if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
|
||
|
local_add(rb->watermark, &rb->wakeup);
|
||
|
|
||
|
page_shift = PAGE_SHIFT + page_order(rb);
|
||
|
|
||
|
handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
|
||
|
offset &= (1UL << page_shift) - 1;
|
||
|
handle->addr = rb->data_pages[handle->page] + offset;
|
||
|
handle->size = (1UL << page_shift) - offset;
|
||
|
|
||
|
if (unlikely(have_lost)) {
|
||
|
struct perf_sample_data sample_data;
|
||
|
|
||
|
lost_event.header.size = sizeof(lost_event);
|
||
|
lost_event.header.type = PERF_RECORD_LOST;
|
||
|
lost_event.header.misc = 0;
|
||
|
lost_event.id = event->id;
|
||
|
lost_event.lost = local_xchg(&rb->lost, 0);
|
||
|
|
||
|
perf_event_header__init_id(&lost_event.header,
|
||
|
&sample_data, event);
|
||
|
perf_output_put(handle, lost_event);
|
||
|
perf_event__output_id_sample(event, handle, &sample_data);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
local_inc(&rb->lost);
|
||
|
perf_output_put_handle(handle);
|
||
|
out:
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
return -ENOSPC;
|
||
|
}
|
||
|
|
||
|
unsigned int perf_output_copy(struct perf_output_handle *handle,
|
||
|
const void *buf, unsigned int len)
|
||
|
{
|
||
|
return __output_copy(handle, buf, len);
|
||
|
}
|
||
|
|
||
|
unsigned int perf_output_skip(struct perf_output_handle *handle,
|
||
|
unsigned int len)
|
||
|
{
|
||
|
return __output_skip(handle, NULL, len);
|
||
|
}
|
||
|
|
||
|
void perf_output_end(struct perf_output_handle *handle)
|
||
|
{
|
||
|
perf_output_put_handle(handle);
|
||
|
rcu_read_unlock();
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
|
||
|
{
|
||
|
long max_size = perf_data_size(rb);
|
||
|
|
||
|
if (watermark)
|
||
|
rb->watermark = min(max_size, watermark);
|
||
|
|
||
|
if (!rb->watermark)
|
||
|
rb->watermark = max_size / 2;
|
||
|
|
||
|
if (flags & RING_BUFFER_WRITABLE)
|
||
|
rb->overwrite = 0;
|
||
|
else
|
||
|
rb->overwrite = 1;
|
||
|
|
||
|
atomic_set(&rb->refcount, 1);
|
||
|
|
||
|
INIT_LIST_HEAD(&rb->event_list);
|
||
|
spin_lock_init(&rb->event_lock);
|
||
|
}
|
||
|
|
||
|
#ifndef CONFIG_PERF_USE_VMALLOC
|
||
|
|
||
|
/*
|
||
|
* Back perf_mmap() with regular GFP_KERNEL-0 pages.
|
||
|
*/
|
||
|
|
||
|
struct page *
|
||
|
perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
|
||
|
{
|
||
|
if (pgoff > rb->nr_pages)
|
||
|
return NULL;
|
||
|
|
||
|
if (pgoff == 0)
|
||
|
return virt_to_page(rb->user_page);
|
||
|
|
||
|
return virt_to_page(rb->data_pages[pgoff - 1]);
|
||
|
}
|
||
|
|
||
|
static void *perf_mmap_alloc_page(int cpu)
|
||
|
{
|
||
|
struct page *page;
|
||
|
int node;
|
||
|
|
||
|
node = (cpu == -1) ? cpu : cpu_to_node(cpu);
|
||
|
page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
|
||
|
if (!page)
|
||
|
return NULL;
|
||
|
|
||
|
return page_address(page);
|
||
|
}
|
||
|
|
||
|
struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
|
||
|
{
|
||
|
struct ring_buffer *rb;
|
||
|
unsigned long size;
|
||
|
int i;
|
||
|
|
||
|
size = sizeof(struct ring_buffer);
|
||
|
size += nr_pages * sizeof(void *);
|
||
|
|
||
|
rb = kzalloc(size, GFP_KERNEL);
|
||
|
if (!rb)
|
||
|
goto fail;
|
||
|
|
||
|
rb->user_page = perf_mmap_alloc_page(cpu);
|
||
|
if (!rb->user_page)
|
||
|
goto fail_user_page;
|
||
|
|
||
|
for (i = 0; i < nr_pages; i++) {
|
||
|
rb->data_pages[i] = perf_mmap_alloc_page(cpu);
|
||
|
if (!rb->data_pages[i])
|
||
|
goto fail_data_pages;
|
||
|
}
|
||
|
|
||
|
rb->nr_pages = nr_pages;
|
||
|
|
||
|
ring_buffer_init(rb, watermark, flags);
|
||
|
|
||
|
return rb;
|
||
|
|
||
|
fail_data_pages:
|
||
|
for (i--; i >= 0; i--)
|
||
|
free_page((unsigned long)rb->data_pages[i]);
|
||
|
|
||
|
free_page((unsigned long)rb->user_page);
|
||
|
|
||
|
fail_user_page:
|
||
|
kfree(rb);
|
||
|
|
||
|
fail:
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static void perf_mmap_free_page(unsigned long addr)
|
||
|
{
|
||
|
struct page *page = virt_to_page((void *)addr);
|
||
|
|
||
|
page->mapping = NULL;
|
||
|
__free_page(page);
|
||
|
}
|
||
|
|
||
|
void rb_free(struct ring_buffer *rb)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
perf_mmap_free_page((unsigned long)rb->user_page);
|
||
|
for (i = 0; i < rb->nr_pages; i++)
|
||
|
perf_mmap_free_page((unsigned long)rb->data_pages[i]);
|
||
|
kfree(rb);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
static int data_page_nr(struct ring_buffer *rb)
|
||
|
{
|
||
|
return rb->nr_pages << page_order(rb);
|
||
|
}
|
||
|
|
||
|
struct page *
|
||
|
perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
|
||
|
{
|
||
|
/* The '>' counts in the user page. */
|
||
|
if (pgoff > data_page_nr(rb))
|
||
|
return NULL;
|
||
|
|
||
|
return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
|
||
|
}
|
||
|
|
||
|
static void perf_mmap_unmark_page(void *addr)
|
||
|
{
|
||
|
struct page *page = vmalloc_to_page(addr);
|
||
|
|
||
|
page->mapping = NULL;
|
||
|
}
|
||
|
|
||
|
static void rb_free_work(struct work_struct *work)
|
||
|
{
|
||
|
struct ring_buffer *rb;
|
||
|
void *base;
|
||
|
int i, nr;
|
||
|
|
||
|
rb = container_of(work, struct ring_buffer, work);
|
||
|
nr = data_page_nr(rb);
|
||
|
|
||
|
base = rb->user_page;
|
||
|
/* The '<=' counts in the user page. */
|
||
|
for (i = 0; i <= nr; i++)
|
||
|
perf_mmap_unmark_page(base + (i * PAGE_SIZE));
|
||
|
|
||
|
vfree(base);
|
||
|
kfree(rb);
|
||
|
}
|
||
|
|
||
|
void rb_free(struct ring_buffer *rb)
|
||
|
{
|
||
|
schedule_work(&rb->work);
|
||
|
}
|
||
|
|
||
|
struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
|
||
|
{
|
||
|
struct ring_buffer *rb;
|
||
|
unsigned long size;
|
||
|
void *all_buf;
|
||
|
|
||
|
size = sizeof(struct ring_buffer);
|
||
|
size += sizeof(void *);
|
||
|
|
||
|
rb = kzalloc(size, GFP_KERNEL);
|
||
|
if (!rb)
|
||
|
goto fail;
|
||
|
|
||
|
INIT_WORK(&rb->work, rb_free_work);
|
||
|
|
||
|
all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
|
||
|
if (!all_buf)
|
||
|
goto fail_all_buf;
|
||
|
|
||
|
rb->user_page = all_buf;
|
||
|
rb->data_pages[0] = all_buf + PAGE_SIZE;
|
||
|
rb->page_order = ilog2(nr_pages);
|
||
|
rb->nr_pages = !!nr_pages;
|
||
|
|
||
|
ring_buffer_init(rb, watermark, flags);
|
||
|
|
||
|
return rb;
|
||
|
|
||
|
fail_all_buf:
|
||
|
kfree(rb);
|
||
|
|
||
|
fail:
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
#endif
|